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a b s t r a c t

Photothermal techniques and effective medium method combining with image method are applied to
investigate the non-steady effective thermal properties of semi-infinite unidirectional fiber-reinforced
composites, and the effect of the semi-infinite surface on the non-steady effective thermal properties is
considered. The dispersion relation for the effective wave number in the semi-infinite random composites
eywords:
emi-infinite fiber-reinforced composites
ffective medium method
on-steady effective thermal properties

mage method

is derived. The image method is used to satisfy the adiabatic boundary condition at the semi-infinite
surface. The numerical solutions of the non-steady effective thermal properties are obtained by using an
iterative scheme. Analyses show that the variation of the non-steady effective thermal properties near the
semi-infinite surface is significantly different from those of the infinite composite structure. The effects
of the circular frequency of thermal waves, the volume fraction of fibers, and the properties contrast ratio
on the maximum non-steady effective properties near the surface are examined. Comparison with the

steady case is also given.

. Introduction

Composite materials are extensively used in engineering fields
or thermal transfer applications. The effective thermal conductiv-
ty of composites is an important property applied in electronic
acking, thermal insulation, heat spreader, etc. [1]. To design and
anufacture an optimal material system, the development of
icromechanics models to accurately predict the effective thermal

onductivity of multiphase composite materials is desirable.
Extensive theoretical and experimental studies on the effective

hermal conductivity of a two-phase composite material under dif-
erent loadings have received great interest in recent years. The

ethods used to measure the thermal conductivity are divided into
wo groups: the steady-state and the non-steady-state methods. In
he first one, the sample is subjected to a constant heat flow. In the
econd group, a periodic or transient heat flow is established in the
ample [2–5]. In the past, much attention has been focused on the
roblems of steady state.

The earliest models for the thermal behavior of composites

ssumed that the two components are both homogeneous, and
re perfectly bounded across a sharp and distinct interface. The
axwell solution [6] is the starting point of finding the effective

hermal conductivity of two-phase material systems, but it is only

∗ Corresponding author. Tel.: +86 311 87936542.
E-mail address: fangxueqian@163.com (X.-Q. Fang).

040-6031/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2009.06.011
© 2009 Elsevier B.V. All rights reserved.

valid for very low concentrations of the dispersed phase. Subse-
quently, many structural models, e.g., parallel, Maxwell–Eucken [7],
and effective medium theory models [8], were proposed. Recently,
Samantray et al. [9] applied the unit-cell approach to study the
effective thermal conductivity of two-phase materials. Based on
the effective medium theory, Bagchi and Nomura [10] developed
a theoretical model to predict the effective thermal conductivity
of an aligned multi-walled nano-tube polymer composite. Based
on an equivalent inclusion concept, Hasselman and Johnson [11]
extended Maxwell’s theory to the systems of spherical inclusion
with a contact resistance. The idea of the generalized self-consistent
model was also developed by Hashin [12] to determine the effective
thermal conductivity of two-phase materials.

In many high-temperature situations, non-steady heat flux is
more common. Due to the complexity of non-steady loading, up
to the present time, very little work treating the non-steady effec-
tive thermal properties has been done. Photothermal techniques
have become powerful tools for the thermophysical characteriza-
tion and non-destructive evaluation (NDE) of various materials in
the past few decades. Recently, Monde and Mitsutake [3] proposed
a method for determining the thermal diffusivity of solids using an
analytical inverse solution for unsteady heat conduction. By using

modulated photothermal techniques, Salazar et al. [2] studied the
effective thermal diffusivity of composites made of a matrix filled
with aligned circular cylinders of a different material. Most recently,
Fang and Hu investigated the distribution of dynamic effective ther-
mal properties along the gradation direction of functionally graded

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:fangxueqian@163.com
dx.doi.org/10.1016/j.tca.2009.06.011
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aterials by using the Fourier heat conduction law [4] and the
on-Fourier heat conduction law [5].

It is well known that in non-destructive evaluation, the periodic
r transient heat flow is often established at the surface of a sam-
le, so the model of the semi-infinite structure is more practical.
owever, because of the effects of the boundaries of the investi-
ated areas, the complex problems such as multiple scattering of
hermal waves resulting from the semi-infinite surface may arise.
n the past, very few investigations on the thermodynamics of
emi-infinite composites have been engaged in. Recently, Terrón
t al. have studied the multiple scattering of a plane thermal wave
etween a subsurface cylinder and the material surface theoreti-
ally and experimentally [13]. The multiple scatterings of thermal
aves between two cylinders and the semi-infinite surface [14],
etween a sphere and the semi-infinite surface [15] were also stud-

ed by Terrón and his coworkers. The image method has proven to be
n efficient way used to satisfy the adiabatic boundary condition.
t has been applied to analyze the multiple scattering of thermal

aves [13–15], flexural waves [16] and shear waves [17] resulting
rom semi-infinite surfaces.

Effective medium method (EMM) is a more accurate method for
valuating the effective field and computing the effective properties
f composites with randomly distributed inclusions, and has been
uccessfully used in analyzing the wave field in composite materi-
ls [18]. By making use of this method, an original inhomogeneous
edia can be replaced by a homogeneous one with the effective

hermodynamic parameters of the former (the homogenization
roblem). This substitution essentially simplifies the analysis of the
ropagation of various types of waves in composite materials (non-
onochromatic waves, non-plane waves). The effective media that

s equivalent to the original composite material is a media with
pace and time dispersion, and hence, its parameters are functions
f frequency of the original field. Through analyzing the non-steady
ffective parameters, one can obtain the non-steady behavior of
omposites under high-frequency thermal impact.

The main objective of this paper is to investigate the non-steady
ffective thermal properties of semi-infinite random unidirectional
ber-reinforced composites by using photothermal techniques. The
diabatic boundary condition at the semi-infinite surface is con-
idered. The effective medium method is applied to analyze the
nteraction of thermal waves between the randomly distributed
bers in the matrix. The dispersion relation for the effective wave
umber in the random media is obtained. In the one-fiber problem,
he image method is employed to satisfy the adiabatic bound-
ry condition at the semi-infinite surface. Through the numerical
xamples, the effects of the phase properties, the volume fraction
f fibers and the incident wave number on the non-steady effective
hermal properties are analyzed.

. Formulation of the thermodynamic problem

Consider a semi-infinite random unidirectional fiber-reinforced
omposite material, as depicted in Fig. 1. The two-dimensional
omposite material is common in many previous works [19,20]. The
omposite material contains a large number N of fibers embedded
n the semi-infinite matrix. The long, parallel fibers with identical
roperties are randomly distributed in the matrix. For simplicity,
he discrete fibers are assumed to be fully bonded to the matrix.
et �0, c0, �0 be the thermal conductivity, specific heat capacity
nd mass density of the matrix, and �, c, � those of the fibers. The

olume fraction of fibers is denoted by Vf.

The global coordinate system of the semi-infinite composite
aterial is denoted by OXY. The sample surface is heated by an

xtended light beam modulated at a frequency ω. The extended
ight beam can generate a plane thermal wave that propagates along
Fig. 1. The incidence of extended light beam and representative volume element in
a semi-infinite random fiber-reinforced composite material.

the X direction in the material. When the thermal wave propagates
in the semi-infinite composite material, the interaction of thermal
waves between the randomly distributed fibers and the multiple
scattering resulting from the boundary of the structures give rise to
the dispersion relations for thermal waves. The propagating wave
number of thermal waves varies because of the dispersion relations,
and it is denoted as the effective wave number ke.

To analyze the interaction of thermal waves between the ran-
domly distributed fibers, a microscopic representative volume
element (RVE) is proposed to represent the microstructure in the
neighborhood of a material point in the semi-infinite composite
material. For any macroscopic material point X0 near the semi-
infinite surface, the corresponding microstructural RVE contains a
number of identical fibers embedded in a continuous matrix, so
that the overall volume fraction of fibers should be consistent with
the macroscopic counterparts Vf. As seen in Fig. 1, the whole RVE
domain is denoted by D, and the microscopic coordinate system OXY
is constructed with its origin at the material point X0. In the RVE,
the effective medium method is employed to derive the non-steady
effective thermal properties and wave fields. The image method
is also combined with effective medium method to consider the
boundary effect of the semi-infinite composite.

3. Dispersion relation in RVE of semi-infinite random
unidirectional fiber-reinforced composites

In the two-dimensional case, when the inner thermal source is
omitted, the heat conduction equation in materials is expressed as:

�(r)∇2T + ∇�(r) · ∇T = �(r)c(r)
∂T(r, t)

∂t
, (1)

where � is the nabla operator, �2 = ∂2/∂x2 + ∂2/∂y2 is the two-
dimensional Laplace operator, T(r,t) is the temperature in materials,
and �(r), c(r) and �(r) are the thermal conductivity, specific heat
capacity and density of materials, respectively.

The non-steady and periodical solution of the problem is inves-
tigated. Let T = T0 + Re[ϑ(r) exp(−iωt)], Eq. (1) can be changed into
the following equation:

�(r)∇2ϑ(r) + ∇�(r)∇ϑ(r) + iω�(r)c(r)ϑ(r) = 0, (2)

where T0 is the mean temperature in materials, ϑ(r) is the amplitude
of temperature, and ω is the circular frequency of thermal waves.
Suppose that �(r), c(r), and �(r) may be presented as the follow-
ing sums:

�(r) = �0 + �s̄(r), �1 = � − �0, c(r) = c0 + s̄(r), c1 = c − c0,

�(r) = �0 + �s̄(r), �1 = � − �0, (3)
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only, � may be written as:
ig. 2. Schematic of the wave incidence and image method in the effective medium
ith one-fiber.

here s̄(r) is the characteristic function of the region s̄ occupied by
he fibers (s̄(r) = 1, if r ∈ s̄, s̄(r) = 0, if r /∈ s̄).

From Eqs. (2) and (3), the governing equation of temperature in
he RVE can be obtained:

0∇2ϑ(r) + i�0c0ωϑ(r) = −∇�1 t̄(r)s̄(r) − iω�1c1ϑ(r)s̄(r), (4)

here t̄(r) = ∇ϑ(r).
Applying the operator (�0�2 + i�0c0ω)−1 to both sides of Eq. (4),

e obtain the integral equation for the temperature field ϑ(r) in the
orm:

(r) = ϑ0(r) +
∫

s

[∇G(r − r′)�1 t̄(r′) + iωG(r − r′)�1c1ϑ(r′)]s(r′) dr′,

(5)

here ϑ0(r) is the temperature field that would have existed in the
edium without fibers (� = 0, c = 0, � = 0), and s is the whole area of

he RVE. G(r) is the Green function of the operator �0�2 + i�0c0ω.
pplying the image method shown in Fig. 2, it is expressed as:

(r) = − i

4�0
[H(1)

0 (k0|r|) + H(1)
0 (k0|r′|)], (6)

here |r′| = (r2 + 4b2 + 4br cos �)1/2 with b being the distance
etween the center of RVE and the semi-infinite edge, H(1)

0 (·) is the
ero order Hankel function of the first kind, k0 is the complex wave
umber of thermal waves, and k0 = (1 + i)k with k =

√
�0c0ω/2�0.

According to the hypotheses of EMM [17], the interaction of tem-
erature field between many fibers in the RVE can be reduced to the
ne-fiber problem. This problem is the diffraction of a monochro-
atic thermal wave on an isolated fiber embedded in the effective
edium with the properties �e, ce and �e. The effective thermal
ave field is ϑe(r) = ϑ̄eei(ke·r−ωt) with ke = ken. Note that ke is the

ffective wave number.
Thus, the integral equation denoted by the effective temperature

eld in the one-fiber region is described as:

(r) = ϑe(r) +
∫

s0

[∇Ge(r − r′)�e1 t̄(r′) + iωGe(r − r′)�e1ϑ(r′)] dr′.

(7)

Here s0 is the area of the fiber cross-section, Ge(r)is the
reen function of effective medium, and �e1 = � − �e, ce1 = c − ce,
e1 = � − �e.
Let the general solution of Eq. (5) be known, and the temperature
eld ϑ(r) inside the fiber with the center at point r0 = 0 be presented

n the form:

(r) = (�ϑe)(r) = �[ϑ̄eeike·r], (8)
Acta 495 (2009) 101–107 103

where � is a linear operator that depends on the non-steady prop-
erties of the effective temperature fields and fiber.

If the fiber occupies area S0 with the center at a point r0 /= 0, one
can present the field ϑ(r) inside such an inclusion in the following
form (r ∈ s0):

ϑ(r) = �[ϑ̄eeike·(r−r0)eike·r0
]

= �[eike·(r−r0)]ϑ̄eeike·r0 = �[eike·(r−r0)]eike·(r−r0)ϑ̄eeike·r

= �ϑ(r − r0)ϑe(r), �ϑ(z) = �[eike·z]e−ike·z. (9)

Similarly, from t̄(r) = ∇ϑ(r), the following can be obtained:

t̄(r) = ∇�[ϑ̄eeike·(r−r0)eike·r0
] = �	(r − r0)ϑe(r),

�t(z) = ∇�[eike·z]e−ike·z, (10)

note that �ϑ(z) and �t(z) do not depend on the position r = 0 of the
center of the fiber. They can be constructed from the solution of the
one-fiber problem for the fiber centered at the point r = 0.

Let us introduce random functions 
ϑ(r) and 
t(r) in the 2D-
space. These functions coincide with �ϑ(r − rt) and �t(r − ri) if r
is inside the fiber centered at point ri (r = 1, 2, 3, . . .), and they are
equal to zero in the matrix. Substitution of Eqs. (9) and (10) into Eq.
(5) yields the following:

ϑ(r) = ϑ0(r) +
∫

s0

[∇G(r − r′)�1
t(r′)ϑe(r′)

+iωG(r − r′)�1c1
ϑ(r′)ϑe(r′)]S(r′) dr′. (11)

In order to find the mean wave field, let us average both sides of
Eq. (11) over ensemble realization of the random set of fibers, and
take into account the condition of ϑe(r) = 〈ϑ(r)〉, the following can
be obtained:

〈ϑ(r)〉 = ϑ0(r) + Vf

∫
[∇G(r − r′)�1�c

+ iωG(r − r′)�1c1��]〈ϑ(r′)〉 dr′, (12)

��(ke) = lim
˝→∞

1
Vf˝

∫
˝


ϑ(r)dr = 1
〈s〉

〈∫
s

�ϑ(r) dr

〉
, (13)

�c(ke) = lim
˝→∞

1
Vf˝

∫
˝


t(r)dr = 1
〈s〉

〈∫
s

�t(r) dr

〉
, (14)

where �� and �c are constant scalar and vector, respectively, ˝
is the two-dimensional plane (x,y) in the RVE, and s is the area
occupied by the typical fiber.

Let us apply the Fourier transform to Eq. (12) and multiply the
result with L0(k) = �0k2 − i�0c0ω. Taking into account the equations:

L0(k)G(k) = 1, L0(k)ϑ0(k) = 0, (15)

the following can be obtained:

Le(k)〈ϑ(k)〉 = 0, Le(k) = L0(k) + Vf�1iki�
c(ke) − Vf�1iω��(ke)

−Vfc1iω��(ke). (16)

Because the vector �c in Eq. (16) is a function of the vector ke
c

�c(ke) = −ikeHC(ke), ke = |ke|, (17)

where HC(ke) is a scalar function. If the mean temperature field
〈ϑ(r)〉 is a plane thermal wave (〈ϑ(r)〉 = ϑ̄eeike·r), its Fourier
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ransform is 〈ϑ(k)〉 = (2�)−1ϑ̄eı(k − ke), Eq. (16) takes the form
e(k)ı(k − ke) = 0, namely:

e(ke) = L0(ke) + Vf�1(ke)2HC(ke) − Vf�1iω��(ke)

− Vfc1iω��(ke) = 0. (18)

This equation may be simplified as:

�e(ke)k2
e − iω[�e(ke) + ce(ke)] = 0, �e(ke) = �0 + Vf�1HC(ke),

�e(ke) = �0 + Vf�1��(ke), ce(ke) = c0 + Vfc1��(ke). (19)

ote that Eq. (19) is the dispersion relation for the effective wave
umber ke of the mean thermal wave field in the RVE.

. The one-fiber problem and image method

By using effective medium method, the multiple scattering of
hermal waves between the random fibers in the matrix is reduced
o the one-fiber problem in the effective wave field. To solve the

ultiple scattering of thermal waves around the fiber resulting
rom the semi-infinite surface, the image method is used to sat-
sfy the adiabatic boundary condition at the semi-infinite surface,
s shown in Fig. 2. The radius of the cylindrical fiber is a. The dis-
ance between the semi-infinite edge and the center of the fiber is
.

Let the effective thermal wave field be incident in the positive x
irection. The incident waves can be expressed as:

(i)
1∗ = ϑ∗ei(k∗·r−ωt) = ϑ∗

∞∑
n=−∞

inJn(k∗r)ein� exp(−iωt), (20)

here ϑ* is the temperature amplitude of the effective thermal
ave field, and Jn(−) is the nth Bessel function. Note that the sub-

cript 1 denotes the wave field around the actual fiber, and the
uperscript (i) denotes the effective incident waves.The reflected
hermal wave at the edge of the semi-infinite composite structure is
escribed by the virtual image fiber. For the image fiber, the incident
aves propagate in the negative x′ direction, and can be expressed

s:

(i)
2∗ = ϑ∗ei(−k∗·r−ωt) = ϑ∗

∞∑
n=−∞

i−nJn(k∗r′)ein�′
exp(−iωt), (21)

ote that the subscript 2 denotes the effective incident waves
round the image fiber.

Considering the multiple scattering of effective temperature
eld between the actual and image fibers, the scattered fields of

hermal waves produced by the actual fiber are described, in the
ocalized coordinate system (r,�), as:

(s)
1∗ =

∞∑
n=−∞

An1H(1)
n (k∗r)ein� exp(−iωt), (22)

ote that the superscript (s) denotes the scattered thermal waves.
In the same way, the scattered waves produced by the image

ber, in the localized coordinate system (r′,�) of the image fiber, are
escribed as:

(s)
2∗ =

∞∑
n=−∞

An2H(1)
n (k∗r′)ein�′

exp(−iωt), (23)
ote that An1 and An2 are the modal coefficients of the scattered
aves for the actual and image fibers, respectively. They are deter-
ined by satisfying the continuity boundary conditions of the

bers. In this paper, they are also dependent on the boundary con-
itions at the semi-infinite surface.
Acta 495 (2009) 101–107

Likewise, the refracted thermal waves inside the actual and
image fibers are standing waves, which can be described as:

ϑ(r)
1∗ =

∞∑
n=−∞

An3Jn(kr)ein� exp(−iωt), (24)

ϑ(r)
2∗ =

∞∑
n=−∞

An4Jn(kr′)ein�′
exp(−iωt), (25)

where An3 and An4 are the modal coefficients of the refracted waves
for the actual and image fibers, respectively. Note that the super-
script (r) denotes the refracted waves.

Substituting Eq. (24) into Eqs. (12), (13) and (16), the following
can be obtained:

�� =
∞∑

n=−∞
An3gn, HC =

∞∑
n=−∞

An3g1n, (26)

gn = 2in

a
· 1

k2 − k2∗
[kJn+1(ka)Jn(k∗a) − k∗Jn(ka)Jn+1(k∗a)], (27)

g1n = gn + 2in

ak∗
Jn(ka)J′n(k∗a). (28)

According to the continuous boundary conditions of the tem-
perature and heat-flux density around the fibers, the boundary
conditions for the effective thermal waves can be written as:

ϑ(t)
1∗ |r=a = ϑ(i)

1∗|r=a + ϑ(s)
1∗ |r=a + ϑ(s)

2∗ |r=a = ϑ(r)
1∗ |r=a, (29)

q(t)
r1∗|r=a = q(i)

r1∗|r=a + q(s)
r1∗|r=a + q(s)

r′2∗|r=a = q(r)
r1∗|r=a, (30)

ϑ(t)
2∗ |r′=a = ϑ(i)

2∗|r′=a + ϑ(s)
2∗ |r′=a + ϑ(s)

1∗ |r′=a = ϑ(r)
2∗ |r′=a, (31)

q(t)
r′2∗|r′=a = q(i)

r′2∗|r′=a + q(s)
r′2∗|r′=a + q(s)

r1∗|r′=a = q(r)
r′2∗|r′=a, (32)

where ϑ(t)
1∗ is the total temperature field around the actual fiber, and

q(t)
r1∗ = −�∗(∂ϑ(t)

1∗ /∂r) is the total heat-flux density around the actual
fiber.

To make the computation tractable, the expressions of thermal
waves in the localized coordinate system (r′,�) should be translated
into the coordinate system (r,�). According to the addition theorem
of Graf [21], the following relations can be derived:

H(1)
n (kr′)ein�′ =

∞∑
m=−∞

(−1)m−nH(1)
m−n(2kb)Jm(kr)eim� , (33)

similarly:

H(1)
n (kr)ein� =

∞∑
m=−∞

H(1)
m−n(2kb)Jm(kr′)eim�′

. (34)

The expressions of the temperature and heat-flux density are
substituted into Eqs. (29)–(32). Multiplying e−is� on both sides of
Eqs. (29)–(32), and then integrating over � ∈ [−�,�], a set of alge-
braic equation system is obtained. After arrangement, the equations
can be simplified as:

[E]{A} = {f }, (35)

where E is a coefficient matrix of 4 × 4, and f is a vector of 4 ranks,
whose elements are shown in Appendix A. After solving the linear
equation system (35), the modal coefficients As1, As2, As3 and As4
(s = 0, ±1, ±2, . . .) can be obtained.
5. Determination of non-steady effective thermal
properties

According to the dispersion relation in Eq. (19), we construct
the numerical solutions of the effective thermal properties. Based
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effective thermal properties increase with the incident frequency
of thermal waves. With the increase of the value of X*, the effect of
the incident frequency of thermal waves becomes weak. It is also
clear that the greater the incident frequency of thermal waves, the
ig. 3. Comparison of the steady effective thermal conductivity with Hasselman and
ohnson (Ref. [11]) (�* = 5.0, c* = 2.0, �* = 2.0, k* = 0).

n Eq. (19), the numerical solutions are obtained by the iterative
rocedure, i.e.

n
e = �n−1

e + ε[�n−1
e − �0(1 + Vf�̄HC(kn−1

e , �n−1
e ))], (36)

n
e = �n−1

e + ε[�n−1
e − �0(1 + Vf�̄1��(kn−1

e , �n−1
e ))], (37)

n
e = cn−1

e + ε[cn−1
e − c0(1 + Vfc̄1��(kn−1

e , cn−1
e ))], (38)

n
e = (1 + i)

(
�n

e cn
e ω

2�n
e

)1/2

, �̄ = �1

�0
, �̄ = �1

�0
, c̄ = c1

c0
, (39)

here kn
e , �n

e , cn
e and �n

e are the effective parameters for the nth iter-
tion, and functions HC(ke,�e), ��(ke,�e) and ��(ke,ce) are defined
n Eqs. (26)–(28). Parameter ε(|ε| < 1) is to be chosen for conversion
f the iterative process. As an initial (zero) approximation, the static
olutions k(0)

e = (1 + 2i)
√

[(�0 + �1)Vf][c0 + c1Vf]ω/�s and �(0)
e =

s are applied. �s is the static thermal conductivity, and is proposed
s [11]:

s = �0

[
1 + ˛Vf[1 + Vfˇ

2/4] + [1 − Vf]
˛Vf(�0/�)[1 + Vfˇ2/4] + [1 − Vf]

]
, (40)

here ˛ = 3�/(� + 2�0), ˇ = (� − �0)/(� + 2�0).

. Numerical examples

To find the effect of the semi-infinite surface, the volume frac-
ion of fibers, the wave frequency of thermal waves, and the thermal
roperty contrast ratio of the two phases on the non-steady effec-
ive thermal properties of the composite, the numerical examples
re given. In the following analysis, it is convenient to make the vari-
bles dimensionless. To accomplish this step, we may introduce a
epresentative length scale a, where a is the radius of the reinforcing
bers. The following dimensionless variables and quantities have
een chosen for computation: k* = k0a = 0.1–5.0, X* = X/a = 1.0–10.0,
* = �/�0 = 0.1–10.0, c* = c/c0 = 0.1–5.0, and �* = �/�0 = 0.1–5.0. The
imensionless effective thermal conductivity is �∗

e = �e/�0, The
imensionless specific heat capacity is c∗

e = ce/c0.
To validate this thermodynamic model, the steady effective ther-

al conductivity of two-phase composites is given in Fig. 3. As
* → 0, the non-steady effective thermal conductivity tends to the

teady solutions. In Fig. 3, the results obtained from the present
odel, and Hasselman and Johnson [11] are plotted. Close agree-
ent is seen to exist between the two models.

When k* = 0, comparison of the effective specific heat capac-
ty with the combing method is also illustrated in Fig. 4. It can
Fig. 4. Comparison of the effective specific heat capacity with the combing method
under steady state (�* = 5.0, c* = 2.0, �* = 2.0, k* = 0).

be seen that the agreement between the two methods is very
good.

In Figs. 5 and 6, we plot respectively the non-steady effective
thermal conductivity and specific heat capacity of the semi-infinite
composite material under different dimensionless wave number as
a function of X* with parameters: �* = 10.0, c* = �* = 2.0 and Vf = 0.1.
It can be seen that the non-steady effective thermal conductivity
and specific heat capacity decrease with the increase of X*. The
maximum values of non-steady effective thermal conductivity and
specific heat capacity occur at the semi-infinite surface. The phe-
nomenon results from the multiple scattering of thermal waves
between the semi-infinite surface and the fibers. Near the semi-
infinite surface, the multiple scattering of thermal waves is strong.
With the increase of the value of X*, the diffusion of thermal waves
from the randomly distributed fibers becomes greater and greater.
So, the non-steady effective thermal conductivity decreases with
the increase of X*. Near the semi-infinite surface, the non-steady
Fig. 5. Effect of wave frequency on non-steady effective thermal conductivity
(�* = 10.0, c* = 2.0, �* = 2.0, k* = 0.1).
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Fig. 8. Effect of volume fraction of fibers on effective specific heat capacity (�* = 10.0,
c* = 2.0, �* = 2.0, k* = 1.0).
ig. 6. Effect of wave frequency on effective specific heat capacity (�* = 10.0, c* = 2.0,
* = 2.0, Vf = 0.1).

reater the effect of the semi-infinite boundary on the non-steady
ffective thermal properties.

Comparing the results in Figs. 5 and 6, it can be seen that the
ffect of thermal wave frequency on the non-steady effective ther-
al conductivity is greater than that on the non-steady effective

pecific heat capacity.
In Figs. 7 and 8, we plot respectively the non-steady effective

hermal conductivity and specific heat capacity of the semi-infinite
omposites under different volume fraction of fibers as a func-
ion of X* with parameters: �* = 10.0, c* = �* = 2.0, and k* = 1.0. It
an be seen that the non-steady effective thermal properties near
he semi-infinite surface increase with the increase of the volume
raction of fibers. However, when the value of X* is greater, the non-
teady effective thermal properties decreases with the increase of
he volume fraction of fibers, and the variations of them with the
olume fraction of fibers are little. This phenomenon results from
he diffraction and attenuation of thermal waves.

Comparing the results in Figs. 7 and 8, it can be seen that the

ffect of volume fraction of fibers on the non-steady effective ther-
al conductivity is greater than that on the non-steady effective

pecific heat capacity.

ig. 7. Effect of volume fraction of fibers on non-steady effective thermal conduc-
ivity (�* = 10.0, c* = 2.0, �* = 2.0, k* = 1.0).

Fig. 9. Effect of properties contrast ratio of the two phases on non-steady effective
thermal conductivity (k* = 1.0, Vf = 0.10).

Fig. 10. Effect of properties contrast ratio of the two phases on effective specific heat
capacity (k* = 1.0, Vf = 0.10).
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To illustrate the effect of properties contrast ratio of the two
hases on the non-steady effective thermal properties of the semi-

nfinite composite structure, Figs. 9 and 10 are plotted. It can be seen
hat the non-steady effective thermal properties in the composite
tructure increase with the increase of the properties contrast ratio
f the two phases. Near the semi-infinite surface, the variations of
on-steady effective thermal properties with the properties con-
rast ratio of the two phases are greater. Comparing the results in
igs. 9 and 10, it can be seen that the effect of properties contrast
atio of the two phases on the non-steady effective thermal con-
uctivity is greater than that on the non-steady effective specific
eat capacity.

. Conclusion

Photothermal techniques are presented to analyze the non-
teady effective thermal properties of semi-infinite random
nidirectional fiber-reinforced composites. By using effective
edium method, the problem of random media is simplified to

he one-fiber problem, and the dispersion relation in the semi-
nfinite random composites is obtained. The one-fiber problem is
olved by employing the wave function expansion method and the
mage method. The numerical examples of the non-steady effective
roperties of the semi-infinite composite structure are graphically
resented. The satisfactory agreement with the static solution has
een observed.

It has been found that the non-steady effective thermal con-
uctivity and specific heat capacity decrease with the increase of
*. The maximum values of non-steady effective thermal conduc-
ivity and specific heat capacity occur at the semi-infinite surface.
he greater the incident frequency of thermal waves, the greater
he effect of the semi-infinite boundary on the non-steady effective
hermal properties. With the increase of the value of X*, the effect of
he incident frequency of thermal waves becomes weak. The non-
teady effective thermal properties near the semi-infinite surface
ncrease with the increase of the volume fraction of fibers and the
roperties contrast ratio of the two phases. Near the semi-infinite
urface, the variations of non-steady effective thermal properties
ith the volume fraction of fibers and the properties contrast ratio

f the two phases are greater. Through comparison, it is also found
hat the effects of wave frequency, the volume fraction of fibers
nd the properties contrast ratio of the two phases on the non-
teady effective thermal conductivity are greater than that on the
on-steady effective specific heat capacity.

ppendix A.

The elements of coefficient matrix E and vector f are given by:

11 = H(1)
s (k∗a), (A1)

12 =
∞∑

n=−∞
(−1)s−nH(1)

s−n(2kb)Js(k∗a), (A2)
13 = Js(ka), (A3)

14 = 0, (A4)

1 = −isJs(k∗a), (A5)

[
[
[

[
[
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E21 = �∗
k∗
2

[H(1)
s−1(k∗a) − H(1)

s+1(k∗a)], (A6)

E22 =
∞∑

n=−∞
(−1)s−nH(1)

s−n(2kb)�∗
k∗
2

[Js−1(k∗a) − Js+1(k∗a)], (A7)

E23 = �0k

2
[Js−1(ka) − Js+1(ka)], (A8)

E24 = 0, (A9)

f 2 = −is
�∗k∗

2
[Js−1(k∗a) − Js+1(k∗a)], (A10)

E31 =
∞∑

n=−∞
H(1)

s−n(2kb)Js(k∗a), (A11)

E32 = H(1)
s (k∗a), (A12)

E33 = 0, (A13)

E34 = Js(ka), (A14)

f 3 = −i−sJs(k∗a), (A15)

E41 =
∞∑

n=−∞
H(1)

s−n(2kb)
�∗k∗

2
[Js−1(k∗a) − Js+1(k∗a)], (A16)

E42 = �∗k∗
2

[H(1)
s−1(k∗a) − H(1)

s+1(k∗a)], (A17)

E43 = 0, (A18)

E44 = �0k

2
[Js−1(ka) − Js+1(ka)], (A19)

f 4 = −i−s �∗k∗
2

[Js−1(k∗a) − Js+1(k∗a)]. (A20)
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